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Abstract The two-pholon odd-parity vibronic transitions in centmsymmetric systems have 
bzen described by a simple model based on the thirdader mechanisms. The use of symmetry- 
adaptation techniques and Racah-Wiper calculus has led to lhe expression for transition 
intensity, including magnetic and vibronic components as well as the polarization factor. This 
expression has been used for calculationsof inlensily strengths of two-photon vibmnic transitions 
between the ground sIAe (18S7/211 and one of the excited I multiplets IpPspl) of the Gd3+ ion 
in surmundings of octahedral symmetry. 

1. Introduction 

It has been known since the 1930s that the selection rules goveming the two-photon (w) 
transitions are complementary to those goveming one-photon spectra and may serve as an 
additional source of information not accessible with classical one-photon methods. The 
construction of lasers made possible the first experimental observations of w absorption 
spectra [I] .  Further development in laser technology, in particular the introduction of tunable 
dye lasers, offered new possibilities. At the beginning of the 1980s very precise w spectra 
of Gd3+ impurities in LaF3 were registered 121 using those lasers. Within the theoretical 
analysis of the reported results it appeared that the second-order theory [3] based on the 
Judd-Ofelt approach to one-photon f-f transitions in rare-earth (RE) ions [4] was insufficient 
for the description of observed TP spectra. New mechanisms had to be introduced in order to 
give satisfactory agreement between experiment and theory. An avalanche of experimental 
IS-71 and theoretical [%I31 papers followed the first report 121. Different ions in different 
crystals were examined, but the Gd3+ ion, an object of the first paper in the series, remained 
the case of special interest The reasons are twofold. First a large energy gap between 
the ground and first excited states excludes the 4f states as intermediate ones, so resonance 
effects are absent. Secondly, the diagonal matrix elements of U"' operators disappear for 
the half-filled 4f7 configuration, and hence the second-order contributions to the TP transition 
intensities for the Gd3+ ion are much weaker than expected and the higher-order effects can 
manifest their importance. 

The first exhaustive analysis of the Gd3+ ion in LaF3 and aqueous solution [9] was 
followed by measurements of TP spectra of this ion in GdCl3, Cd(OH)3 [14], gadolinium 
diglycolate [IS] and CszNaGdCls [16,17]. The experimental set-ups and the means of 
theoretical analysis of experimental results were rather similar in all investigated cases. 
The reported calculations generally confirmed the importance of spin-orbit and crystal-field 
third-order mechanisms of two-photon absorption (TPA) introduced in the first papers of a 
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series [8,9] in describing the observed spectra properly. However, the improved model was 
still not perfect and its inaccuracy was usually explained by the ligand-polarizability effect 
[IO, 111 or other mechanisms [12], but no detailed calculations had been carried out. 

Recent measurements of TPA of Gd3* in elpasolites [16,17] have brought qualitatively 
new features to the field. First, the highly symmetric surroundings (Oh site symmetry) are 
something new, since in former cases only systems of low symmetry were investigated 
D3h [9], c3h 1141, Ds [IS]. In those symmetries the totally resolved J levels could be 
characterized in most cases by a single magnetic quantum number M ,  while for oh symmetry 
this approach is no longer sufficient. The second novelty is the TP vibronic lines observed 
for the first time in RE ions (IS]. This new feature is absent or too weak to be Observed in 
RE spectra in other systems, but quite common in transition-metal TPA spectra [19]. 

In the present paper we are going to report the theoretical analysis of the TP vibronic 
spectra in terms of the symmetry-adaptation technique. The proposed approach makes the 
calculations of the transition intensities trivial, even in highly symmetric systems, where 
the eigenstates have several comparable M components. Moreover, within the analysis of 
vibrational normal modes, the symmetry adaptation is just inevitable. 

The observed vibronic spectra [IS] contain exclusively lines induced by odd-parity 
modes, so the standard even-parity mechanism [3] cannot describe this unusual kind of 
vibronic transition. The theory developed will then focus on a new mechanism of TP 
transitions accompanied by odd-parity vibrational excitations. Within the presented model 
the general formula for the intensity of TP vibronic transitions will be derived. It will be 
next applied to calculations of transition intensities of the Gd3+ ion in octahedral symmetry. 

2. General theoretical framework 

In order to describe the vibronic transitions we will use the perturbation approach with the 
crude adiabatic wavefunctions 

I*) = I@vib(R))l*.zcl(T. Ro)) (1) 

as the zero-order states. The electronic part I$&, Ro)) is the eigenstate of the lanthanide 
electronic system corrected by the static potential Vo(r. Ro) produced by the ligands fixed 
at the equilibrium position Ro. To obtain the electronic wavefunction we will start with the 
free-ion intermediatecoupling states calculated by Camall et nl [ZO]. They are given as a 
linear combination of L S  coupling states: 

where S, L and J are the spin, orbital and total angular momentum quantum numbers, 
while IY includes all other necessary labels. In the case of rare-earth ions the expansion (2)  
usually contains the leading term ISoLoJo), which serves as a label of the eigenstate. Some 
examples of expansion (2) can be found in table 1, where the ground state ~[*S,,Z]) and the 
lowest excited states 1[6P~]) of a free Gd3+ ion within the intermediate-coupling scheme 
have been listed [ZO]. 

For a free ion the eigenstates (2 )  are classified by J ,  which is a good quantum number 
owing to the spherical symmetry of the system. Each of the levels is degenerate with 
multiplicity [J] = 25 + 1 and their components are marked by I J M ) .  When an ion is 
put into a crystal of local symmetry G, its levels split owing to the interaction with the 
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Table 1. The leading campanen@ of the grannd state and two excited states of a Free Gd'+ ion 
within the intermediate.-coupling scheme (according to Camall et a1 PO]). 

i[ss7,1) PP7/21) I["5/21) 

'S -0.9860 -0.1559 - 
'P -0.1651 0.8672 
'D 0.0125 -0.3633 
6F -0.0011 0.0645 
4D1 -0.0141 0.1852 
"DZ -0.0002 0.0399 
"D3 -0.0011 0.0468 
4D4 0.0030 -0.0464 
4D5 -0.0032 0.0051 
'D4 -0.0143 0.1972 

-0.9105 
0.3735 

-0.0574 
-0,1046 
-0.0087 
-0.0399 
0.0280 

-0.0032 
-0.1 I12 

surrounding ions and the JM quantum numbers do not classify the eigenstates properly any 
more. However, in the case of the RE ions, it  has been proved on many examples that the J 
mixing does not introduce any significant changes to transition intensities [21], and hence in 
this paper we will neglect this phenomenon. Nevertheless, the magnetic quantum number 
M completely loses Its value as an eigenstate label and, especially for highly symmetric 
systems, it has to be replaced by the irreducible representation (irrep) label r of the point 
group G, and the index y ,  which numbers the base vectors of degenerate representations. 
The multiplicity index r is necessary when the representations of the same dimension 
appear more than once in the irrep J. Finally, the electronic eigenstates are labelled by 

The vibrational wavefunction @v,b of equation (1) depends on the position of nuclei 
creating the system under study. Since we are interested in vibrations localized on the 
RE ion and its surroundings, we will use here the molecular approach and will focus our 
considerations on the limited number of nuclei creating the complex. 

The wavefunction Jrv,b is assumed to be an eigenstate of thc harmonic oscillator. This is 
possible when we limit the expansion of the potential to the quadratic terms and pass from 
the nuclear displacements R to normal coordinates. The Hamiltonian of nuclear vibrations 
is diagonalized and the vibrational wavefunctions can be expressed as 

I ~ I S L I  m y ) .  

where x: is a harmonic oscillator function with the occupation number vi for the ith normal 
mode of the mth elecmnic state. Normal modes can be classified in the same way as the 
electronic states. They are marked by Q7ry where the indices r r y  have the same meaning 
as for the electronic case. 

The general expression (3) can be further simplified if we assume that the electronic 
potential surfaces of the initial and final states are identical, so the index m is not necessary. 
The above assumption is usually satisfied quite well by the RE systems. Moreover, we will 
consider vibrational states with only one, singly excited mode. In this case we may label 
this state by 10) when it is phononless, and by lQrry) when the mode erry is excited. 

The vibronic transitions between the wavefunctions (1) are caused by the light beam and 
the vibrations of the complex. Within the perturbation theory the TP transition probability 
between the ground state (gl and the final state I f )  of type (1) is proportional to: 
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+ (RIVl-,(n)(nIVviblm)(mI~-,(f)(E,. - ho)-'(Ez, - Ro)-' 

(4) + (81  VI-^ In)(n Ih-,,,lm) (m I V v d f ) ( E 8 .  - ho)-'E;;l+ . . . 

where ER" = E, - E, are the energy denominators, K-,,, is the light-matter interaction 
and Vvib is the vibronic potential. In principle, more perturbing potentials can be of some 
importance in Tp vibronic transitions (e.g. spin-orbit or crystal-field interaction within the 
excited configuration), but in order to avoid higher-order perturbation terms we will treat 
those contributions in an effective way, the details of which will be given later. 

The vibronic potential Vvib appears within the expansion of the electron-nucleon 
interaction in powers of the normal coordinates Q [22]: 

12 

Hen = V o k  Ro) f Vvib(rY)Qry + . . . = VO(r, R d  + vvib 4- . . . . (5 )  
r y  

The expansion coefficients V,ib(ry)  are purely electronic operators and Q r y  are one-phonon 
operators dependent only on nuclear vibrational coordinates. 

The light-matter interaction VI-,,, is given by 1231: 

VI-,,, = (iG/c)Ao(o)[B. D + (L x B) . m] (6) 

where E^ is the light polarization unit vector. k is a unit vector directed along the light beam 
and 0 = Eif/h. D is an electric dipole operator, D = er, and m is the magnetic dipole 
operator defined by: 

m = (e/Zmc)(l+ 2s). (7) 

Combining equations (4) and (6) we obtain the third-order expression for the amplitude 
of TP vibronic transitions, limited to the leading electnoelectric and electric-magnetic 
terms: 

+ (81'?'olm)(mlVvibln)(nl(l% x .̂)"If) + ,. .I. (8) 

Let us note that, for wavefunctions of defined parity (which is the case here), the first 
term (electric-electric) gives non-zero contributions only for even-parity vibrations while 
the second term (electric-magnetic) works only for odd-parity modes. This happens owing 
to the odd character of operator D and even character of m. Moreover, we demand Vvib to 
be a scalar of point symmetry group, which implies that the electronic operator \'vib(ry) of 
(5) has to have the same symmetry as the vibronic mode taking part in the transition. The 
above symmetry considerations suggest that the electric-magnetic mechanism represented 
by the second term of (8) may be responsible for the odd-parity vibronic spectra mentioned 
in the introduction [IS]. However, the transition intensity analysis is necessary to make 
the proposed mechanism more convincing, so the next few pages will be devoted to direct 
calculations of the intensities of Tp vibronic * S 7 p  + 6Pslz transitions in the Gd3 ion in 
symmetry Oh. The question why the electric-magnetic vibronic transitions can be stronger 
than elecvioelectric ones is a separate problem, which will also be discussed shortly in the 
next section. 
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3. Transition intensity 

If we assume the mixed electric-magnetic dipole character of Tp vibronic transitions, then 
equation (8) gives the following expression for the transition amplitude: 

where d' = L x d. 
Let us note that, owing to the even parity of the magnetic dipole operator and odd parity 

of D, one of the intermediate configurations of (9) and (1 1) is a p u n d  configuration 4fN. 
while in (IO) both intermediate states [m) and In) belong to the configuration of the panty 
opposite to the ground state. This means that both of the energy denominators of (IO) are of 
the order of 150000 cm-', while one of the energy denominators of (9) and (1 I )  is an order 
of magnitude smaller. Therefore we will neglect the term (IO) in our further considerations. 

Examining the expressions in large parentheses in (9) and (1  1) we observe that they 
describe one-photon vibronic transitions and can be re laced by matrix elements of an 
effective electric-dipole one-photon vibronic operator VJid (= V,ib) defined for the general 
case by Reid and Richardson [XI: 

P 

where U is a normal mode index containing group theoretical labels r y  (as in (5)).  
The new. simplified expression for TP vibronic transition amplitude is given by 

Before we pass on to further simplifications and detailed calculations of fx let us first briefly 
analyse the electrioelectic term of equation (8). responsible for vibronic transitions induced 
by even vibrations. Following the procedure already applied to the electric-magnetic term 
we can obtain the electric-electric counterpart of formula (13): 

where HeT is an effective TP operator defined [25] by 
* 

(11 (1) ffg = E* ) .  U"'). 
k I . 2  

Let us compare respective matrix elements of equations (13) and (14). First, we should 
note that the vibrational components of both equations are, within our assumptions, of the 
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same form (01 Q v l Q . ) .  Extracting this component we can state, within a very rough analysis, 
that the one-photon vibronic matrix element (g[P.V,i!,lm) and TP matrix element (glHeT[m) 
should be of the same order of magnitude owing to their quadrupole character and similar 
origin. Similarly, if we compare the magnetic dipole matrix element (g12. mlm) and even 
vibronic matrix element (glV,ib[m), we may conclude that the former should not be smaller 
than the latter, since its electronic part is a sum of quadrupole and higher-rank even-parity 
multipole operators. 

This very crude analysis suggests that the two mechanisms considered should produce 
comparable transition intensities, and for some special cases the magnetic-electric vibronic 
transitions can dominate. This encouraging conclusion supports our effort to develop 
equation (13) into a form that can be used in direct calculations of transition intensities. 

Further simplifications may be introduced in formula (13) if we specify the initial and 
final states we are considering. The available experimental data [le] made us focus on 
the transition between the Gd3+ ground state [[*S7/2]) and one of the lowest excited states 
1[6P5~2]) (both of them listed in table I). If we note that 

(i) the magnetic dipole operator m acts exclusively within the LS term, 
(ii) the final state 1[6Ps,~]) does not contain any admixture of [ *S7 /2 ) ,  and 
(iii) the most important component of the initial state, apart from 18S7p), is I6Ps/2) 

then we can conclude that most of the transition intensity defined by (13) comes from the 
1[6PJ]ry) intermediate states, which means that we need the electronic matrix elements of 
the form 

([6p,)lv~~(~)~~6pS/ZI) ([ss7/211v~~(~)~[6pJ1)~ (16) 

To obtain reliable values for those elements we would have to carry out a separate theoretical 
analysis including higher-order effects, espcially an effect of spin-orbit interaction in 
excited intermediate configurations, which proved to be of great importance for the 
description of TP spectra [9]. Also the one-photon crystal-field-induced transitions have 
been recently reinvestigated with special s tms  on the same mechanisms [26]. Owing to 
the formal similarity, the one-photon vibronic transitions in centrosymmetric systems could 
be investigated within the same scheme, but it would lead us far away from our main topic 
and would probably be sufficient for a separate paper. In the present paper we will assume 
that the matrix elements (16) are comparable. In this case we may further simplify our 
calculations if we notice that the ground state contains only a very small admixture of the 
state I6P,/2), so the magnetic part of the first term of (13) is much smaller than that of the 
second term and hence we may assume that the second term dominates. It gives the final 
formula for the Tp vibronic transition amplitude: 

3.1. Calculations 

Our goal is to calculate an expression of a general form: 

f r Y - t r y  12) C (cu.ryie, . pIjwr'yf) 
J',r',y' 

x (,9J'r"y'[Cz .Q1GJf'r"y")(Eg,,r - b o ) - ] .  
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Within the standard approach the summation over intermediate states is replaced by unity, 
so that the tensor operators can be recoupled, creating an effective operator acting between 
initial and final states. This procedure is based on the closure approximation, which can 
be applied only when the intermediate states constitute a complete set of states and are far 
enough from the ground state to make the assumption that they are energetically degenerate 
realistic. In our case, however, the intermediate states belong to the ground configuration, so 
assuming the configuration's degeneracy would be too CNde an approximation. However, 
we may assume that the I S L J )  manifolds are degenerate, which leads to replacing E p p p  of 
equation (18) with E p j , .  In crystals doped with RE ions the crystal-field splitting is of the 
order of a few tens of cm-I, so it is much smaller than E g j ,  -ho and our approximation 
is fully justified. Owing to this approximation we will be able to simplify the calculations 
considerabfy and take advantage of using the symmetry-adaptation methods. 

To carry out the summation over r'y' we first have to express the scalar products of 
equation ( I  8) in terms of the tensor's components, according to the definition 

A'k) . Blkl = ( - , ) k [ k ] l / 2 ( ~ l k l ~ l k l ) ~ ~ )  - - (-l)k[k]'/2 C A $ B & ( k r y ,  kr*y*100) 
ry  

and apply the Wigner-Eckart theorem to matrix elements of (18): 

The 

J 1 J' 

Y YI Y 
(c) and (I- rl P) 

symbols are the 2 j m  and 3 j m  symbols [27] of a chain of groups SO3-G-H. G is a symmetry 
group of a system and H is its subgroup with exclusively one-dimensional irreps, necessary 
to define partners y of G irreps r. In our case G Oh and H may be C3 or q, depending 
on the choice of a basis. The branching labels in (20) are omitted in order to simplify the 
notation. However, the summation over r y  is understood as also including the branching 
multiplicity. Fortunately, the coupling multiplicity labels are not necessary for SO3 and H, 
as long as the latter is a cyclic group. 

The summation over T'y' can be carried out [271 and the content of the square brackets 
of (20) gives: 
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If we put (21) into (20) and rearrange the resulting expression, the transition amplitude will 
take the form 

Making use of properties and definition of 3 j  symbols [27] we may transform the content 
of the square brackets of (22) to 

Now, the transition amplitude is given by 

The intensity strength 

S,,," 12) = clf;;+,.,Ml 2 

Y.Y" 

can be calculated in a standard way [E], by employing the factorization property of 3j 
symbols and the coupling factor orthonormality: 
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where x coefficients are given by 

and r are the coupling multiplicity labels of group G. 

3.2. The intensity ofthe 1[8S,,z]) + 1[6P5p]) TP vibronic transition 

The formalism described in section 3.1 will now be used in calculations of intensities of TP 
vibronic transitions between the ground state ~[*S,,Z]) and one of the excited states 1[6P~pl) 
of the Gd3+ ion situated in a neighbourhood of octahedral symmetry. In order to specify 
equations of section 3.1 to our case we have to put € 1  = d and e2 = k x d (k perpendicular 
to d), while operators P and Q should be replaced by Vvib(u) and m, respectively. This 
can be done on the previously suggested assumption that the second term of equation (13) 
gives the leading contribution to the process. 

Since there are no common irreps of group 0 for A = 1 and A = 2 ((1) = TI, 
(2) = E@T2) there will be no cross-terms with respect to A, A‘ in equation (26). Hence, it 
may be simplified to 

where the polarization factor E: is defined by 

and its explicit form for octahedral symmetry will be calculated below. 
First, let us note that the scalar term ( E I ” E : ’ ) ( ~ ~  is equal to zero, since E, is by definition 

perpendicular to €2.  The first-rank tensor (~1’~6:~))(~) can be expressed in terms of the vector 
product [28]: 

(A”’B“’)“’  = (i/J2)A x B (30) 

and we obtain 

( E ~ ” E : ) ) ‘ ~ ~  = ( i / ~ 2 ) q  x €2 = (i/Jz)[d x (k x ;)I = (i/,/2)k. (31) 

The second-rank tensor can be obtained by direct coupling of spherical components of the 
polarization vectors. For k directed along the z axis and C making an angle $ with axis x 
we get: 
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Both polarization tensors should be now transformed to the symmetry-adapted form by 
means of the formula 

To define the symmetry-adapted components rsy, we choose the chain SO3 3 0 3 D4 3 
C4. The reduction coefficients (hqJAr(0)r(D4)I'(C4)) are then given by 1271: 

From equations (31H34) we get the polarization factors of equation (28) for the particular 
case of octahedral symmetry: 

Having calculated the polarization factors we can rewrite equation (28) in a form containing 
explicit dependence of intensity strength on the direction of the polarization vector with 
respect to the crystal axes: 

s~!,~,,(u) = s?(rr"; u)E,., 111 - - Is"' ( rr". , U) + s;*'(rr"; U); sinzt2e) 
Arp 

+ s$(rr"; c0s2(20) (36) 

where we have introduced, for the sake of clarity. an auxiliary factor S?(lTr; w ) :  

s?(rr"; W )  = Ix[ir,. rr"; r ;  V ~ J ~ .  (37) 
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Table 2. The oscillalor strength P;L1, of electronic transitions I301. approximace values of the 
ratio g1-,,(v) defined by equation (40). estimated from specha of 1291. and values of reduced 
matrix elemenu of V:: defined by equation (41). 

Parameters x defined by equation (27) are, in our particular case, given by 

where r E {rs, r7, r8} and r” E (r,, rx]. 
The reduced matrix elements of the magnetic dipole operator can be calculated directly 

from the definition of m (equation (7)). Using the intermediate-coupling eigenfunctions 
presented in table 1 and equation (7) we obtain for J‘ = 7/2 and 5/2 values of 
([6P~.]llm11pP5,2]) equal to 5.0 x IO-” cm and 25.7 x lo-” cm, respectively. 

Evaluation of the vibronic reduced matrix elements is much more complicated. The 
semiempirical approach seems to be the most effective way of doing it. Comparing the 
theoretical expression for the oscillator strength of one-photon vibronic transition between 
multiplets 0rJ + @J’ [4] 

with the measured one, we may obtain the values of l(illV~~’(v)ll f ) I 2 .  Here UJ,J, is the 
energy difference between multiplets 0rJ and PJ’,  expressed in cm-I. r,. rp are the 
crystal-field components of J multiplets and v marks the considered normal mode. 

Since in our case the experimental values of the vibronic oscillator strength are not 
available [29] we may estimate them by means of the ratio 

gJ-+Y(v) = PJ’! ,,(v)/p;!+y. (40) 

Experimental values of g,,,.(v) can be roughly estimated from [29] and are presented in 
table 2. The oscillator strengths of electronic transitions Pj!+,, calculated by Camall et a1 
[30] are equal to 4.13 x and 2.33 x lo-* for transitions from the ground state to 6P7/2 
and 6P5p, respectively. 

Combining (39) with (40) we get 
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To calculate the intensity strength defined by equation (36) we have to sum SFLr.(u) 
with respect to three degenerate components r. (n = 6,7,8) of the ground state. Numerical 
values of E, S;'(rJ'''; U) for crystal-field components r'' = r7 and rs, and vibrations 
u4(TiU) and U6(Tzu) have been calculated and presented in table 3. The data collected in 
this table suggest that the term (1,Tl) of equation (36) is of secondary importance, and 
dominant terms (2, E) and (2,  Tz) are comparable. However, we should remember that 
their relative contributions to the intensity strength (equation (36)) depend on the crystal 
orientation with respect to the light polarization vector. For example, for the particular case. 
of i directed along the edge of a cube, the. term (2,  E) is not active at all. 

Within the experimental studies [I81 of the discussed transitions, all of them were 
observed but the line r7u6  was too weak to establish its relative intensity. Moreover. lines 
r7uq and Tsu6 overlapped, so only the ratio U between the integrated intensity  IF,^, t IrSw 
and I,,, could be measured and was equal to 1.85. The fourth column of table 3 for the 
transition r7u6 gives intensities at least two times smaller than for other transitions, which 
justifies its low experimental value. If we sum columns 2 and 5 and compare with the third 
column we get the ratio cs = 1.1, which is not very close to the measured one. However, 
owing to the imperfections of the investigated crystal [ le]  it was difficult to establish its 
orientation with respect to the laser beam and hence the comparison of the theory and 
experiment cannot be very precise. More experimental data are necessary in order to carry 
out a real test of the presented theory. 

Table 3.  metical values of E,, s$rnrff; U) defined by equation (37) for r" = r, and rs. 
and for active vibrating modes v4(T1.) and v d T d  

c s;y(r.r7: ~ 4 )  zrs$rnrg: W) c. s;;+r~7: ~ 6 )  zns&'cr,r8; WJ 

*rr I X l O Y \  t X i o %  txi054) (x IOy) 

I = I ,  r3 = T, 3.7 1.3 2.25 0.8 .I =2,  r3 = E  28.4 43.1 14.8 22.6 
A = 2. r, = T~ 20.8 50.7 10.9 26.5 

4. Conclusions 

The main purpose of the present paper was to develop a simple theoretical model describing 
TP vibronic transitions in RE3+ ions in crystals. The model is based on mechanisms 
arising within the third-order perturbation theory, including electric dipole-electric dipole 
electronic transitions as well as electric dipole-magnetic dipole ones. It has been roughly 
estimated that the two mechanisms give comparable contributions to transition intensities 
and, since the available TP spectra [ 181 exhibit only the presence of vibronic lines induced 
by odd vibrations, we have focused our interest on the latter, electriomagnetic, mechanism 
responsible for this kind of transition. 

To develop the general expression for the transition intensity, we have extensively used 
the symmetry-adaptation techniques and Racah-Wigner calculus for point groups. Applying 
these methods we were able to carry out a summation over the components of J multiplets 
of intermediate configuration, which significantly simplified further calculations. Moreover. 
the use of the symmetry-adapted form of electronic and vibrational parts of eigenstates and 
interaction Hamiltonians has given a consistent and uniform description of the phenomena 
considered, including details of the dependence of intensity strength on the light polarization. 
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The general expression for TP vibronic electric-magnetic transitions has been used for 
calculations of intensity strength of transitions between the ground state ([RS7/2]1 and one of 
the excited J multiplets 1[6P~p]) of the Gd3+ ion in surroundings of octahedral symmetry. 
First, the explicit dependence of transition intensites on the direction of the polarization 
vector with respect to the axes of a cubic crystal has been established. Within further analysis 
the set of intermediate states has been limited to the single term 6P of configuration 4f7, 
which made the calculations relatively simple, in comparison to the ignored electrioelectric 
term. The magnetic dipole reduced matrix elements between the states of the term 6P have 
been calculated from first principles with use of free-ion eigenstates provided by Camall et 
a1 [20]. However, in order to avoid much more complicated ab initio calculations of the 
vibronic part, which would involve many uncertain quantities, we have used a semiempirical 
approach, so that the reduced matrix elements of the effective vibronic operator have been 
estimated from available one-photon spectra of the considered system [29] and theoretical 
values of one-photon electronic oscillator strengths 1301. It should be noted, however, that 
the accuracy of the proposed method would be even better if experimental values of vibronic 
oscillator strengths were available. 

The theoretical investigations of TP vibronic transitions presented in this paper a ~ .  far 
from being complete. The detailed ab initio analysis of vibronic terms would demand 
the inclusion of higher-order effects, and would eventually lead to a m m  satisfactory 
theoretical model. However, the experimental evidence of Tp vibronic transitions in RE ions 
is so poor that we decided to take a more pragmatic view and focus ow effort on a particular 
mechanism and the simplest way of calculating the transition intensity, which could explain 
existing results. 

One important question is still left unanswered where are the ~p vibronic lines to be 
found? Within the simple model of IT electric-electric vibronic transitions [31] it can be 
shown that the vibronic factor depends on R-4, where R is the distance between the metal 
ion and the ligand. The respective one-photon vibronic operator [32] active in an electric- 
magnetic mechanism depends on R-3. Hence, we can suggest that the even-parity vibronic 
lines should be sought in systems with relatively strong T P  electronic transitions and ligands 
situated close to the central ion. The odd-parity vibronic transitions can be observed in 
cases where the magnetic transitions within the excited or ground LS terms are strong and 
T P  electronic transitions are relatively weak. The Gd” ion, well known for its very small 
reduced matrix elements of U‘k’ operators, is a perfect case where this rule can be applied. 
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